CMOS Timer

General Description
The LMC555 is a CMOS version of the industry standard 555 series general purpose timers. In addition to the standard package (SOIC, MSOP, and MDIP) the LMC555 is also available in a chip sized package (8 Bump micro SMD) using National’s micro SMD package technology. The LMC555 offers the same capability of generating accurate time delays and frequencies as the LM555 but with much lower power dissipation and supply current spikes. When operated as a one-shot, the time delay is precisely controlled by a single external resistor and capacitor. In the stable mode the oscillation frequency and duty cycle are accurately set by two external resistors and one capacitor. The use of National Semiconductor’s LMCMOS™ process extends both the frequency range and low supply capability.

Features
- Less than 1 mW typical power dissipation at 5V supply
- 3 MHz astable frequency capability
- 1.5V supply operating voltage guaranteed
- Output fully compatible with TTL and CMOS logic at 5V supply
- Tested to −10 mA, +50 mA output current levels
- Reduced supply current spikes during output transitions
- Extremely low reset, trigger, and threshold currents
- Excellent temperature stability
- Pin-for-pin compatible with 555 series of timers
- Available in 8-pin MSOP Package and 8-Bump micro SMD package

Pulse Width Modulator

Ordering Information

<table>
<thead>
<tr>
<th>Package</th>
<th>Temperature Range</th>
<th>Package Marking</th>
<th>Transport Media</th>
<th>NSC Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin Small Outline (SO)</td>
<td>Industrial −40°C to +85°C</td>
<td>LMC555CM</td>
<td>Rails</td>
<td>M08A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMC555CMX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Pin Mini Small Outline (MSOP)</td>
<td></td>
<td>LMC555CMM</td>
<td>2.5k Units Tape and Reel</td>
<td>MUA08A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMC555CMMX</td>
<td>1k Units Tape and Reel</td>
<td></td>
</tr>
<tr>
<td>8-Pin Molded Dip (MDIP)</td>
<td></td>
<td>LMC555CN</td>
<td>3.5k Units Tape and Reel</td>
<td>N08E</td>
</tr>
<tr>
<td>8-Bump micro SMD NOPB</td>
<td></td>
<td>LMC555CTP</td>
<td>250 Units Tape and Reel</td>
<td>TPA08FGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMC555CTPX</td>
<td>3k Units Tape and Reel</td>
<td></td>
</tr>
</tbody>
</table>

Note: See Mil-datasheet MNLMC555-X for specifications on the military device LMC555J/883.

LMCMOS™ is a trademark of National Semiconductor Corp.
Connection Diagrams

8-Pin SOIC, MSOP, MDIP

Top View

8-Bump micro SMD

Top View
(Bump Side Down)
Absolute Maximum Ratings *(Note 2, Note 3)*

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V^+: 15V

Input Voltages, $V_{\text{TRIG}}, V_{\text{RES}}, V_{\text{CTRL}}$:

V_{THRESH}: $-0.3V$ to $V_S + 0.3V$

Output Voltages, V_O, V_{DIS}: 15V

Output Current I_O, I_{DIS}: 100 mA

Storage Temperature Range: $-65°C$ to $+150°C$

Soldering specification for MDIP package:

Soldering (10 seconds) 260°C

Soldering specification for all other packages:

see product folder at www.national.com and www.national.com/ms/MS/MS-SOLDERING.pdf

Operating Ratings *(Note 2, Note 3)*

Temperature Range: $-40°C$ to $+85°C$

Thermal Resistance (θ_{JA}) *(Note 2)*

SO, 8-Pin Small Outline 169°C/W

MSOP, 8-Pin Mini Small Outline 225°C/W

MDIP, 8-Pin Molded Dip 111°C/W

8-Bump micro SMD 220°C/W

Maximum Allowable Power Dissipation @25°C

MDIP-8 1126 mW

SO-8 740 mW

MSOP-8 555 mW

8 Bump micro SMD 568 mW

Electrical Characteristics *(Note 1, Note 2)*

Test Circuit, $T = 25°C$, all switches open, RESET to V_S unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>$V_S = 1.5V$
$V_S = 5V$
$V_S = 12V$</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>μA</td>
</tr>
<tr>
<td>V_{CTRL}</td>
<td>Control Voltage</td>
<td>$V_S = 1.5V$
$V_S = 5V$
$V_S = 12V$</td>
<td>0.8</td>
<td>2.9</td>
<td>7.4</td>
<td>V</td>
</tr>
<tr>
<td>V_{DIS}</td>
<td>Discharge Saturation Voltage</td>
<td>$V_S = 1.5V, I_{\text{DIS}} = 1 mA$
$V_S = 5V, I_{\text{DIS}} = 10 mA$</td>
<td>75</td>
<td>150</td>
<td>300</td>
<td>mV</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Voltage (Low)</td>
<td>$V_S = 1.5V, I_O = 1 mA$
$V_S = 5V, I_O = 8 mA$
$V_S = 12V, I_O = 50 mA$</td>
<td>0.2</td>
<td>0.3</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output Voltage (High)</td>
<td>$V_S = 1.5V, I_O = -0.25 mA$
$V_S = 5V, I_O = -2 mA$
$V_S = 12V, I_O = -10 mA$</td>
<td>1.0</td>
<td>4.4</td>
<td>10.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{TRIG}</td>
<td>Trigger Voltage</td>
<td>$V_S = 1.5V$
$V_S = 5V$
$V_S = 12V$</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>I_{TRIG}</td>
<td>Trigger Current</td>
<td>$V_S = 5V$</td>
<td>4.0</td>
<td>4.3</td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>V_{RES}</td>
<td>Reset Voltage</td>
<td>$V_S = 1.5V$ (Note 4)</td>
<td>0.4</td>
<td>0.75</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>I_{RES}</td>
<td>Reset Current</td>
<td>$V_S = 5V$</td>
<td>10</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>I_{THRESH}</td>
<td>Threshold Current</td>
<td>$V_S = 5V$</td>
<td>10</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Discharge Leakage</td>
<td>$V_S = 12V$</td>
<td>1.0</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>t</td>
<td>Timing Accuracy</td>
<td>SW 2, 4 Closed
$V_S = 1.5V$
$V_S = 5V$
$V_S = 12V$</td>
<td>0.9</td>
<td>1.1</td>
<td>1.25</td>
<td>ms</td>
</tr>
<tr>
<td>$\Delta t/\Delta V_S$</td>
<td>Timing Shift with Supply</td>
<td>$V_S = 5V \pm 1V$</td>
<td>0.3</td>
<td></td>
<td></td>
<td>$%V$</td>
</tr>
<tr>
<td>$\Delta t/\Delta T$</td>
<td>Timing Shift with Temperature</td>
<td>$V_S = 5V$
$-40°C \leq T \leq +85°C$</td>
<td>75</td>
<td></td>
<td></td>
<td>$ppm/°C$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Conditions</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Units (Limits)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---------------</td>
</tr>
<tr>
<td>f_A</td>
<td>Astable Frequency</td>
<td>SW 1, 3 Closed, V_S = 12V</td>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
<td>kHz</td>
</tr>
<tr>
<td>f_MAX</td>
<td>Maximum Frequency</td>
<td>Max. Freq. Test Circuit, V_S = 5V</td>
<td>3.0</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>t_R, t_F</td>
<td>Output Rise and Fall Times</td>
<td>Max. Freq. Test Circuit V_S = 5V, C_L = 10 pF</td>
<td>15</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_PD</td>
<td>Trigger Propagation Delay</td>
<td>V_S = 5V, Measure Delay from Trigger to Output</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: See AN-1112 for micro SMD considerations.

Note 4: If the RESET pin is to be used at temperatures of −20°C and below V_S is required to be 2.0V or greater.

Note 5: For device pinout please refer to table 1

Test Circuit (Note 5)

Maximum Frequency Test Circuit (Note 5)

TABLE 1. Package Pinout Names vs. Pin Function

<table>
<thead>
<tr>
<th>Pin Function</th>
<th>Package Pin numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin SO, MSOP, and MDIP</td>
<td>8-Bump micro SMD</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>Trigger</td>
<td>2</td>
</tr>
<tr>
<td>Output</td>
<td>3</td>
</tr>
<tr>
<td>Reset</td>
<td>4</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>5</td>
</tr>
<tr>
<td>Threshold</td>
<td>6</td>
</tr>
<tr>
<td>Discharge</td>
<td>7</td>
</tr>
<tr>
<td>V+</td>
<td>8</td>
</tr>
</tbody>
</table>

www.national.com
Application Information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by internal circuitry. Upon application of a negative trigger pulse of less than 1/3 V_{S} to the Trigger terminal, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.

The voltage across the capacitor then increases exponentially for a period of $t_H = 1.1 \, R_A \, C$, which is also the time that the output stays high, at the end of which time the voltage equals $2/3 \, V_{S}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply.

The voltage across the capacitor then increases exponentially for a period of $t_H = 1.1 \, R_A \, C$, which is also the time that the output stays high, at the end of which time the voltage equals $2/3 \, V_{S}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply.

FIGURE 1. Monostable (One-Shot)

The voltage across the capacitor then increases exponentially for a period of $t_H = 1.1 \, R_A \, C$, which is also the time that the output stays high, at the end of which time the voltage equals $2/3 \, V_{S}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply.

VCC = 5V
TIME = 0.1 ms/Div.
$R_A = 9.1 \, k\Omega$
C = 0.01 μF

FIGURE 2. Monostable Waveforms

Reset overrides Trigger, which can override threshold. Therefore the trigger pulse must be shorter than the desired t_H. The minimum pulse width for the Trigger is 20ns, and it is 400ns for the Reset. During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10us before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal. The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not used, it is recommended that it be connected to V_{+} to avoid any possibility of false triggering. Figure 3 is a nomograph for easy determination of RC values for various time delays.

Note: In monostable operation, the trigger should be driven high before the end of timing cycle.

FIGURE 3. Time Delay

ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (Trigger and Threshold terminals connected together) it will trigger itself and free run as a multivibrator. The external capacitor charges through $R_A + R_B$ and discharges through R_B. Thus the duty cycle may be precisely set by the ratio of these two resistors.

FIGURE 4. Astable (Variable Duty Cycle Oscillator)

In this mode of operation, the capacitor charges and discharges between 1/3 V_{S} and 2/3 V_{S}. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.
Figure 5 shows the waveform generated in this mode of operation.

![Waveform](image)

V\(_{CC}\) = 5V
TIME = 20 µs/Div.
R\(_A\) = 3.9 kΩ
R\(_B\) = 9 kΩ
C = 0.01 µF

FIGURE 5. Astable Waveforms

The charge time (output high) is given by
\[t_1 = 0.693 \times (R_A + R_B)C \]

And the discharge time (output low) by:
\[t_2 = 0.693 \times R_B C \]

Thus the total period is:
\[T = t_1 + t_2 = 0.693 \times (R_A + 2R_B)C \]

The frequency of oscillation is:
\[f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B) C} \]

Figure 6 may be used for quick determination of these RC Values. The duty cycle, as a fraction of total period that the output is low, is:
\[D = \frac{R_B}{R_A + 2R_B} \]

![Free Running Frequency Diagram](image)

FIGURE 6. Free Running Frequency

FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit.

![Frequency Divider Waveforms](image)

V\(_{CC}\) = 5V
TIME = 20 µs/Div.
R\(_A\) = 9.1 kΩ
C = 0.01 µF

FIGURE 7. Frequency Divider Waveforms

PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to the Control Voltage Terminal. Figure 8 shows the circuit, and in Figure 9 are some waveform examples.

![Pulse Width Modulator](image)

FIGURE 8. Pulse Width Modulator
FIGURE 9. Pulse Width Modulator Waveforms

PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in *Figure 10*, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. *Figure 11* shows the waveforms generated for a triangle wave modulation signal.

FIGURE 10. Pulse Position Modulator

- $V_{CC} = 5V$
- Time = 0.2 ms/Div.
- $R_{A} = 9.1 \, k\Omega$
- $C = 0.01 \, \mu F$

FIGURE 11. Pulse Position Modulator Waveforms

50% DUTY CYCLE OSCILLATOR

The frequency of oscillation is

$$f = \frac{1}{1.4 \, R_{C} \, C}$$

FIGURE 12. 50% Duty Cycle Oscillator

micro SMD Marking Orientation

Top View

- $X = 1$ Digit Date Code
- $V = 1$ Digit Die Run
- $I = Pin 1$ Designator

FIGURE 12. 50% Duty Cycle Oscillator

- $V_{CC} = 5V$
- Time = 0.1 ms/Div.
- $R_{A} = 3.9 \, k\Omega$
- $R_{B} = 3 \, k\Omega$
- $C = 0.01 \, \mu F$
Physical Dimensions inches (millimeters) unless otherwise noted

Molded Small Outline (SO) Package (M)
NS Package Number M08A

CONTROLLING DIMENSION IS MILLIMETER
VALUES IN () ARE INCHES
DIMENSIONS IN () FOR REFERENCE ONLY

M08A (Rev M)

8-Pin (0.118" Wide) Molded Mini Small Outline Package
NS Package Number MUA08A

CONTROLLING DIMENSION IS INCH
VALUES IN () ARE MILLIMETERS

MUA08A (Rev F)
Molded Dual-in-line Package (N)
NS Package Number N08E

Dimensions are in inches
DIMEN (IN.) IN X 1 FOR REFERENCE ONLY

N08E (Rev G)
NOTES: UNLESS OTHERWISE SPECIFIED
1. EPOXY COATING
2. FOR SOLDER BUMP COMPOSITION, SEE "SOLDER INFORMATION" IN THE PACKAGING SECTION OF THE NATIONAL SEMICONDUCTOR WEB PAGE (www.national.com).
3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
4. PIN A1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.
5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS PACKAGE HEIGHT.
6. REFERENCE JEDEC REGISTRATION MO-211, VARIATION BC.

8-Bump micro SMD Package
NS Package Number TPA08FGA
X₁ = 1.412 X₂ = 1.438 X₃ = 0.300
Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

<table>
<thead>
<tr>
<th>Products</th>
<th>Design Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>WEBENCH® Tools</td>
</tr>
<tr>
<td>Audio</td>
<td>App Notes</td>
</tr>
<tr>
<td>Clock and Timing</td>
<td>Reference Designs</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Samples</td>
</tr>
<tr>
<td>Interface</td>
<td>Eval Boards</td>
</tr>
<tr>
<td>LVDS</td>
<td>Packaging</td>
</tr>
<tr>
<td>Power Management</td>
<td>Green Compliance</td>
</tr>
<tr>
<td>Switching Regulators</td>
<td>Distributors</td>
</tr>
<tr>
<td>LDOs</td>
<td>Quality and Reliability</td>
</tr>
<tr>
<td>LED Lighting</td>
<td>Feedback/Support</td>
</tr>
<tr>
<td>Voltage References</td>
<td>Design Made Easy</td>
</tr>
<tr>
<td>PowerWise® Solutions</td>
<td>Applications & Markets</td>
</tr>
<tr>
<td>Serial Digital Interface (SDI)</td>
<td>Mil/Aero</td>
</tr>
<tr>
<td>Temperature Sensors</td>
<td>SolarMagic™</td>
</tr>
<tr>
<td>PLL/VCO</td>
<td>PowerWise® Design University</td>
</tr>
</tbody>
</table>

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

<table>
<thead>
<tr>
<th>National Semiconductor America Technical Support Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email: support@nsc.com</td>
</tr>
<tr>
<td>Tel: 1-800-272-9959</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Semiconductor Europe Technical Support Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email: europe.support@nsc.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Semiconductor Asia Pacific Technical Support Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email: ap.support@nsc.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Semiconductor Japan Technical Support Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email: jpn.feedback@nsc.com</td>
</tr>
</tbody>
</table>